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ABSTRACT Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To
characterize genomic variation among the four major lineages of C. gattii (VGI, -1, -I1I, and -IV), we generated, annotated, and
compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syn-
tenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages.
Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four
lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress,
mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to
be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the
other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV,
which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of
population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mito-
chondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein
aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive
selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex.

IMPORTANCE The genetic differences between phenotypically different pathogens provide clues to the underlying mechanisms
of those traits and can lead to new drug targets and improved treatments for those diseases. In this paper, we compare 16 ge-
nomes belonging to four highly differentiated lineages of Cryptococcus gattii, which cause pulmonary infections in otherwise
healthy humans and other animals. Half of these lineages have not had their genomes previously assembled and annotated. We
identified 15 ancestral rearrangements in the genome and over 700 genes that are unique to one or more lineages, many of which
are associated with virulence. In addition, we found evidence for recent transcontinental spread, mitochondrial genetic ex-
change, and positive selection in multidrug transporters. Our results suggest that gene expansion/contraction and positive selec-
tion are diversifying the mechanisms of pathogenicity across this species complex.
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ryptococcus gattii is a pathogenic yeast of humans and other

animals, which causes disease in predominantly immuno-
competent hosts, unlike its opportunistic sister species Cryptococ-
cus neoformans (1), which primarily causes disease in immuno-
compromised hosts. C. gattii comprises four distinct lineages (var.
gattii I [VGI], -1II, -III, and -IV) (2) with such considerable genetic
variation that they have recently been described as separate species
(C. gattii, C. deuterogattii, C. bacillisporus, and C. tetragattii, re-
spectively) (3). However, the lineages can mate and exchange ge-
netic material; for example, a mitochondrial hybrid derived from
a VGII and VGIII in vitro cross was recently described (4). C. gattii
even maintains the ability to form hybrids with C. neoformans,
e.g., VGI-VNI (5) and VGII-VNIV (6) hybrids. Although C. gattii
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is globally ubiquitous in both environmental and clinical settings,
it has some geographic population structure, such as VGI pre-
dominating in Europe, VGII predominating in North and South
America, and VGIV predominating in the southern countries of
Africa (7). VGI and VGII are the most frequently encountered
globally (~800 from a panel of 1,000 global isolates [7]) and have
been found on every continent tested. Of the four C. gattii clades,
VGII appears to be the most basal (2, 8) and may originate from a
recombining population in the rainforest of northern Brazil (9).
Although all four lineages of C. gattii are capable of causing
disease, VGI and VGII cause the majority of infections in im-
munocompetent hosts, while the VGIII and VGIV groups cause
infections only rarely and among predominantly immunocom-
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promised hosts. It is currently unclear if the clinical underrepre-
sentation of VGIII and VGIV is due to differences in their ability to
cause disease or to sparsity in the environment. Hypervirulent
isolates belonging to the VGII group are responsible for nearly all
infections in the Pacific Northwest (PNW), including the Vancou-
ver Island outbreak (10). VGII also differs from VGI in its clinical
presentation, with a higher rate of respiratory than of central ner-
vous system (CNS) symptoms (11, 12). To date, phospholipase B
(13); laccase, which catalyzes melanin synthesis (14); and urease
(15) have each been implicated in the ability of C. neoformans to
disseminate from the lung via the lymphatic system and blood to
the central nervous system. However, a systematic comparison
among the four lineages of C. gattii for the presence or absence or
genetic diversity of these genes has not been performed.

VGII outbreak strains also have an enhanced ability to rapidly
proliferate within host macrophages (16), where reactive oxygen
species (ROS) stimulate tubular mitochondrial morphology as a
protective mechanism against autophagic degradation (17).
C. gattii is further able to protect itself from ROS and other host-
imposed stresses such as iron deprivation (18) and increased CO,
concentrations (19) by encapsulating itself in glucuronoxyloman-
nan, galactoxylomannan, and mannoproteins. This polysaccha-
ride capsule provides a physical barrier that interferes with normal
macrophage phagocytosis and clearance by the immune system
(20). Differences in capsule size have also been reported between
lineages and even between the different subclades VGIla and
VGIIb (21). Again, it is unclear if these phenotypic differences are
due to the distribution or to the allelic richness of virulence deter-
minants.

Genome sequencing for just two isolates (VGI isolate WM276
and the VGII isolate R265) revealed an abundance of diversity,
including chromosome copy number variation, genomic rear-
rangements, and gene presence and absence polymorphisms (1).
A more recent comparison of whole-genome data generated for a
diverse set of isolates illustrated the increased power for phyloge-
netic analysis (22) and for fine-scale mapping of recombination
and variation for VGII isolates (23, 24) and for VGIII isolates (25).
Such lineage-specific genetic differences may factor into pheno-
typic differences such as disease outcome. Here, we expand on this
question by generating and comparing 16 de novo genome assem-
blies representing all four known lineages of C. gattii, including
the first fully annotated assemblies from VGIII and VGIV. We also
utilize an extended panel of 53 sequenced isolates to more fully
evaluate the impact of positive selection and phylogeographic pat-
terns.

RESULTS

Variation of genome structure across 16 de novo assemblies. To
explore the genomic variation among the global population of
C. gattii, we sequenced 15 isolates representing all four known
lineages and including both clinically and environmentally de-
rived isolates (Fig. 1). Additionally, we used Illumina sequencing
to make improvements to the widely used VGIIa R265a genome
representing the PNW outbreak lineage. Specifically, we resolved
over 124 kb of ambiguous sites (37% of previous total), replaced
4,166 single bases, and introduced 2,382 insertions and deletions.
Each of the assemblies was highly contiguous and ranged in length
from 17.32 to 18.36 Mb (Fig. 1). Genome length did not correlate
with lineage after accounting for repetitive and low-complexity
regions (see Table S1 in the supplemental material), and neither
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did the number of predicted and annotated protein-encoding
genes, which ranged from 6,456 to 6,763. However, considerable
genetic variation was identified between lineages (93% average
identity and 52 single nucleotide polymorphisms [SNPs] per kb)
compared with intralineage comparisons (97% average identity
and fewer than 6 SNPs per kb [see Table S2 in the supplemental
material).

To reconstruct the evolutionary relationships between and
within the four lineages, we used 5,319 single-copy orthologous
protein-coding genes from all 16 isolates, along with the widely
studied C. neoformans VNI isolate H99 (26) as an outgroup
(Fig. 1). Concordant with relationships previously determined us-
ing amplified fragment length polymorphism (AFLP) analysis (2)
and sequencing of four independent genetic loci (8), we found
that VGI and VGIII are the most closely related, separated from
VGIV by only a short branch. VGII is the earliest-diverging and
most isolated group compared to the other three. Using thousands
of genes across each lineage provides robust intralineage resolu-
tion of their evolutionary relationships and their intercontinental
distribution within lineages VGI and VGIL.

Chromosome structure was highly conserved among the four
lineages and very highly conserved within VGII. Almost all syn-
tenic variation was identified among the three closely related lin-
eages, VGI, VGIII, and VGIV (Fig. 1; see also Fig. SI in the sup-
plemental material). In total, 15 large (greater than 100-kb)
chromosomal rearrangements were identified such that, on aver-
age, only 2.6% of each of the 16 genomes was rearranged with
respect to the others (see Table S3 and Fig. S1). These 15 rear-
rangements included 10 translocations (seven interchromosomal
and three intrachromosomal) and five scaffold fusions, most of
which (13 of the 15) associated with clusters of predicted TcN
transposons (see Fig. S1) found at centromeres (26), suggesting
that these are primarily whole-chromosome arm rearrangements.
Four of the rearrangements were supported by multiple isolates,
including one chromosomal fusion unique to VGII (see Fig. S2),
two translocations unique to VGIII (700 kb and 140 kb, respec-
tively), and one 450-kb translocation unique to VGIV. These
changes may impact the capacity for interlineage genetic ex-
change, as some crossover events will generate missing chromo-
somal regions or other aneuploidies and nonviable progeny.

In addition to chromosomal rearrangements, we identified
aneuploidies in three isolates belonging to VGII and VGIII, con-
firmed the MATa locus in all five isolates with this locus, and
predicted MATa in 10 previously unconfirmed isolates from all
four lineages (see Table S4 in the supplemental material) using
read coverage. Specifically, we found an additional (disomic) copy
of scaffold 13 (SC13) in VGII veterinary isolate B8828 and a dis-
omy of SCII in VGIII clinical isolate CA1280 (syntenic to the first
half of WM276 chromosome cgba [see Fig. S2]). Variation in
chromosome copy number has previously been shown to influ-
ence the virulence of C. neoformans (27) and can further provide
resistance to azole drugs by increasing the copy number of the
azole drug target (ERG11) or transporter (AFR1) commonly am-
plified in drug-resistant C. neoformans (28). However, neither
gene appears to have a higher copy number in these isolates, sug-
gesting that these aneuploidies are not associated with known
drug resistance mechanisms, although they may have other effects
on those isolates. We also identified a 60-kb intrachromosomal
duplication in the middle of SC1 of VGII clinical isolate LA55
(also syntenic to WM276 chromosome cgba), which interestingly
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FIG 1 Phylogeny, gene content, and synteny of 16 de novo assemblies of C. gattii. (Top) Phylogenetic tree inferred by using RAXML from single-copy (1:1)
orthologs among four lineages of C. gattii and the outgroup C. neoformans. Numbers above tree branches indicate gene gain and loss events, and asterisks indicate
100% bootstrap support from 1,000 replicates. The central table details the origin and source of each isolate, as well as the number of contigs and total length
(megabases) of each assembly. The bar chart shows the numbers of lineage-specific (LS) and multilineage-specific (MLS) genes, divergent 1:1 orthologs
(unclustered by OrthoMCL but identified via synteny), paralogous clusters, and auxiliary (present in =1 isolate but not all isolates of the encompassing lineage)
and unique genes. (Bottom) Visualization of the synteny (gray) and structural variants (red) between representatives for each lineage (VGI WM276, VGII R265,
VGIII CA1280, and VGIV IND107). Genes are shown as small black boxes, while LS and MLS are shown above in red and green, respectively (corresponding to
the bar chart). Scaffold numbers or letters are shown along with orientation (+/—).

did not appear in the closely related isolate CBS10090. This 60-kb
region covers 24 protein-encoding genes that are not known to
influence drug resistance in C. neoformans (see Data Set S1).
Lineage-specific genes are involved in metal ion binding, re-
sponses to oxidative stress, and mitochondrial function. To ex-
plore the distribution of virulence-associated genes across the four
lineages, we used synteny to correct all nonorthologous genes for
divergent orthogroups (n = 175) that had not been correctly re-
solved (see Text S1 and Data Set S1 in the supplemental material).
Key virulence genes were each found as single-copy orthologs
across all four lineages, such as those that are implicated in C. neo-
formans dissemination from the lung (phospholipase B [13], lac-
case [LACI and LAC2] [14], and urease [15]). In addition, at least
32 of 35 genes potentially involved in capsule biosynthesis in
C. neoformans (29) were also single-copy orthologs in C. gattii.
Only a UDP-glucose epimerase (CNAG_03096, Uge2) is not
found in any C. gattii strain; mutations in a related gene, Ugel,
result in larger capsule size and defective production of glucuron-
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oxylomannogalactan (GXMGal), which is part of the capsule (30).
These findings suggest that most genes involved in synthesis of the
polysaccharide capsule and other genes involved in virulence are
conserved between C. gattii and C. neoformans.

In total, 737 orthogroups (4,224 genes, 4.17% of all C. gattii
genes) were lineage specific (LS) or specific to a subset of 2 or 3
lineages (multilineage specific [MLS]). These genes predomi-
nantly derived from many small intrachromosomal changes and
are distributed across all chromosomes (Fig. 1; see also
Text S1 and Fig. S1 in the supplemental material). By tracing the
evolutionary history of these genes on our rooted phylogenetic
tree, we were able to assign 661 of 737 (90%) gene clusters to a
given node via a single loss or gain event (Fig. 1; Table 1; see also
Data Set S1). To examine the functional significance of LS and
MLS genes, we evaluated their Pfam domains and Gene Ontology
(GO) terms for statistical enrichment using the two-tailed Fisher
exact test with false discovery rate (FDR)-corrected P values (g) of
<0.05 (see Data Set S1). We found that each lineage carries a
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TABLE 1 Top 10 significantly enriched, nonambiguous Pfam domains (g value, <0.05) identified across each lineage(s)

Lineage Pfam accession no. Pfam description®? q valuec
VGI specific PF02301.13 HORMA (HORMA domain) 3.62E—08
PF01794.14 Ferric reduct (ferric reductase-like transmembrane component) 1.27E—06
PF08022.7 FAD binding 8 (FAD-binding domain) 2.29E—06
PF03151.11 TPT (triose-phosphate transporter family) 3.85E—06
PF08030.7 NAD binding 6 (ferric reductase NAD-binding domain) 5.42E—06
PF00098.18 zf-CCHC (zinc knuckle) 1.02E—05
PF00628.24 PhD (PhD-finger) 3.92E—05
PF01408.17 GFO IDH MocA (oxidoreductase family, NAD-binding Rossmann fold) 1.37E—04
PF00005.22 ABC tran (ABC transporter) 3.02E—03
PF04982.8 HPP (HPP family) 7.59E—03
VGI-VGIII specific PF00098.18 zf-CCHC (zinc knuckle) 5.58E—13
PF00160.16 Pro isomerase (cyclophilin-type peptidyl-prolyl cis-trans isomerase/CLD) 9.37E—12
VGI-VGIII lost PF00070.22 Pyr redox (pyridine nucleotide- disulfide oxidoreductase) 8.55E—17
PF07110.6 EthD (EthD domain) 3.04E—12
PF07992.9 Pyr redox 2 (pyridine nucleotide- disulfide oxidoreductase) 1.17E—15
VGIII specific PF05970.9 PIF1 (PIF1-like helicase)® 1.07E—02
VGIII lost PF03952.11 Enolase N (enolase, N-terminal domain) 4.68E—43
PF00113.17 Enolase C (enolase, C-terminal TIM barrel domain) 4.21E—42
PF01176.14 elF-1a (translation initiation factor 1A/IF-1) 1.68E—35
PF07766.8 LETM1 (LETM1-like protein)® 1.68E—35
PF02627.15 CMD (carboxymuconolactone decarboxylase family) 1.61E—33
PF00732.14 GMC oxred N (GMC oxidoreductase) 3.76E—28
PF05199.8 GMC oxred C (GMC oxidoreductase) 3.76E—28
PF07476.6 MAAL C (methylaspartate ammonia-lyase C terminus) 1.13E—27
PF00199.14 Catalase (catalase) 3.39E—25
PF06628.7 Catalase-rel (catalase-related immune responsive) 3.39E—25
VGIV specific PF13650.1 Asp protease 2 (aspartyl protease) 7.38E—03
VGIV lost PF07883.6 Cupin 2 (Cupin domain) 1.51E—44
PF01758.11 SBF (sodium bile acid symporter family) 1.08E—22
PF02678.11 Pirin (Pirin) 1.08E—22
PF00190.17 Cupin 1 (Cupin) 6.01E—22
PF04145.10 Ctr (Ctr copper transporter family) 6.01E—22
PF13344.1 Hydrolase 6 (haloacid dehalogenase- like hydrolase) 1.42E—20
PF13242.1 Hydrolase-like (HAD-hydrolase-like) 1.47E—18
PF00702.21 Hydrolase (haloacid dehalogenase-like hydrolase) 4.10E—15
PF00631.17 G-gamma (GGL domain) 5.09E—08
VGII specific PF04144.8 SCAMP (SCAMP family) 4.21E—16
PF13865.1 FoP duplication (C-terminal duplication domain of Friend of PRMT1) 4.21E—16
PF00722.16 Glyco hydro 16 (glycosyl hydrolase family 16) 2.32E—12
PF02567.11 PhzC-PhzF (phenazine biosynthesis-like protein) 2.32E—12
PF02893.15 Gram (GRAM domain) 2.32E—12
PF05071.11 NDUFA12 (NADH ubiquinone oxidoreductase subunit NDUFA12) 2.32E—12
PF00326.16 Peptidase S9 (prolyl oligopeptidase family) 9.61E—11
PF00657.17 Lipase GDSL (GDSL-lik lipase/acylhydrolase) 9.61E—11
PF02441.14 Flavoprotein (flavoprotein) 9.61E—11
PF01619.13 Pro dh (proline dehydrogenase) 1.30E—10
VGII lost PF02170.17 PAZ (PAZ domain) 1.05E—24
PF02171.12 Piwi (Piwi domain) 1.05E—24
PF11790.3 Glyco hydro ml (glycosyl hydrolase catalytic core) 6.10E—19
PF01902.12 ATP bind 4 (ATP-binding region)” 1.13E—16
PF00784.12 MyTH4 (MyTH4 domain) 6.24E—15
PF02897.10 Peptidase S9 N (prolyl oligopeptidase, N-terminal beta-propeller domain) 6.24E—15
PF08660.6 Algl4 (oligosaccharide biosynthesis protein Alg14-like) 6.24E—15
PF12862.2 Apc5 (anaphase-promoting complex subunit 5) 6.24E—15
PF00141.18 Peroxidase (peroxidase) 5.18E—11
PF01713.16 Smr (smr domain) 5.18E—11

@ Domains belong to genes with homology to essential genes in Saccharomyces cerevisiae, and similar nucleotide sequence was detected in the corresponding C. gattii genome using tBLASTn.
b Abbreviations: FAD, flavin adenine dinucleotide; HAD, haloacid dehalogenase.
¢ Corrected P values were calculated from the two-tailed Fisher exact test with g-value FDR.

unique subset of genes that are putatively involved in virulence
and disease outcome, including genes that bind Fe™/Cu*, main-
tain or affect the morphology of the mitochondria, and respond to
stress responses (Table 1). Furthermore, the largest enriched cat-
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egory of GO biological processes from all of the LS plus MLS genes
combined was the response to oxidative stress.

VGI has a unique expansion of genes carrying the ferric
reductase-like transmembrane component and ferric reductase
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NAD-binding domains. Ferric reductases are involved in the pro-
duction of the virulence factor melanin and resistance to azole
antifungal drugs (31). Overall, VGI had the fewest LS genes of the
four lineages (n = 60) but 12 significantly enriched Pfam do-
mains, which also included an expansion of genes with the
HORMA domain thought to be involved in DNA repair (32).

VGlIl isolates, which include those associated with the Vancou-
ver Island outbreak (10), carry an expanded repertoire of secretory
carrier membrane proteins (SCAMPs) involved in membrane
trafficking, the Friend of Prmt1 (Fop) chromatin-associated pro-
tein domain (33), and the heat shock protein 70 (HSP70) domains
found in chaperone proteins. Deletions made to the HSP70 gene
family member Ssal in C. neoformans have indicated that HSP70
functions as a stress-related transcriptional coactivator required
for fungal virulence (34). The expansion of HSP70 among VGII
isolates suggests it as a possible mechanism for adaptation to new
environments.

VGII is missing 146 genes that are present in the other three
lineages, which is 3-fold fewer than corresponding gene losses in
the VGI-III-IV lineages combined (Fig. 1; Table 1), further sug-
gesting that the genomes of this lineage have been more stable over
time. Enriched domains from these missing genes include the
PAZ, Piwi, and DUF1785 domains, all of which are components of
the RNA interference (RNAi) machinery (35), confirming previ-
ous studies that found both of the Argonaute genes AGOI and
AGO2 missing from previously screened VGII strains (1, 36). Fur-
ther, genes lost in VGII include functional domains involved in
protein processing and degradation, such as Algl4 domains, re-
quired for the second step of N-linked glycosylation (37); two S9
peptidases; and the anaphase-promoting complex subunit 5, a
component of the anaphase-promoting complex. However, a
translated BLAST of essential yeast genes against the VGII ge-
nomes revealed an Algl4-like sequence, suggesting that the gene
may be present but that either a gene structure was not predicted
or it was recently pseudogenized. Half of the PIF1-like helicases
crucial for both nuclear and mitochondrial genome maintenance
(38) have been lost in VGII strains; these could play a role in the
different tubular mitochondrial morphology of VGII (17). In ad-
dition, peroxidases, cytochrome oxidase ¢ subunit VIb (COX6B),
and the ferritin iron-binding region signature 2 are also uniquely
absent in the VGII isolates, each of which may be involved in the
ability of Cryptococcus to defend itself against antioxidant stresses
(39).

The inclusion of the first genomes for VGIII isolates revealed
79 LS genes that included a significant enrichment for PIF1-like
helicases important for genome stability (38) and phosphopyru-
vate hydratases/enolases (40), which are highly conserved major
fungal allergens (40). Glucose-methanol-choline (GMC) oxi-
doreductases, which include a number of antifungal proteins se-
creted by a diverse range of fungal species, were also lost in VGIII
(41). Leucine zipper-EF-hand-containing transmembrane pro-
tein 1 (LETM1) was predicted in each of the other lineages but not
predicted in VGIII, although a translated BLAST revealed
LETM1-like sequence. Proteins with the LETM1 domain may be
located in the mitochondria and involved in mitochondrial mor-
phology (42). It is perhaps of relevance that mitochondrial hy-
brids have been documented from VGIII parental isolates (4).

VGIV infects predominantly immunocompromised hosts and
has lost one of three genes containing the Ctr copper transporter
family domains, which were present across the remaining three
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lineages. These genes have been shown to influence Cryptococcus
survival during pulmonary infection and the onset of meningoen-
cephalitis (43). Genes absent in VGIV also include Pfam domains
for three of the haloacid dehalogenases (HADs), which catalyze
carbon or phosphoryl group transfer reactions on a diverse range
of substrates (44). VGIV also had the greatest number of LS genes
(n = 170). However, of these, only aspartyl protease 2 was signif-
icantly enriched (Table 1).

Lineages overlap geographically as well as show evidence for
recent transcontinental spread. To more widely examine the di-
versity of the C. gattii population, we included sequences from an
additional 37 isolates, including 18 newly sequenced isolates, and
identified variants from these sequences and the 16 assembled
genomes (see Table S4 in the supplemental material). Represen-
tatives from all four major lineages were included; while the ma-
jority were from VGII (n = 31), multiple isolates represented each
lineage. Most strains originated from the Pacific Northwest
(PNW; n = 28), but multiple isolates originated from South
America, Africa, Europe, Australia, and Asia. Diverse sources in-
cluded clinical (n = 34), animal (n = 10), and environmental (n =
9) sources. We also sequenced a strain resulting from an in vitro
interlineage cross of parent isolates CBS10090 (VGII) and
NIH312 (VGIII) (4).

To identify the phylogenetic relationships of these isolates,
variants were identified with reference to the improved C. gattii
VGII R265 assembly (see Table S4 in the supplemental material),
and a phylogenetic tree was constructed (see Materials and Meth-
ods). The tree revealed four highly related groups within VGII
(Fig. 2), representing VGIla, VGIIb, and VGIIc and another,
smaller group that we term VGIIXx, which falls between VGIIa and
VGIIb. Two of these groups (VGIIb and VGIIx) contained isolates
from separate continents, suggesting that intercontinental trans-
mission has occurred in recent history. VGIIb includes isolates
from the PNW (n = 4), Australia (n = 1), and the Caribbean (n =
1). The VGIIx group includes two isolates from different conti-
nents, CBS10090 from Greece and LA55 from Brazil. These trans-
continental groups, in conjunction with each of the four lineages
spanning 2 or more continents, suggest recent, potentially ongo-
ing dispersal of multiple lineages of C. gattii.

Recombination between lineages is more pronounced in the
mitochondrial genome than in the nuclear genome. Phyloge-
netic analysis of nuclear genome-wide variation recapitulated the
deeply separated VG lineages also observed in the ortholog-based
phylogeny (Fig. 1). Both trees suggest that the lineages have re-
mained largely isolated since their divergence, despite their over-
lapping geographic distribution and niches. Infrequent outgroup
mating among the nuclear genomes of isolates is further sup-
ported by calculations of 6, Weir’s formulation of Wright’s fixa-
tion index (Fgp) (45), on pairwise comparisons of each lineage
using sliding windows (see Fig. S3 in the supplemental material).
Across 10-kb windows of each scaffold of the nuclear genome, in
each of the six pairwise comparisons (n = 156), values ranged
between 0.77 and 0.99, suggesting that there has been little nuclear
genetic exchange between the lineages. The only notable excep-
tion is a 120-kb stretch at the start of scaffold 18 in each of the
pairwise comparisons (values at around 0.5). This region is where
the MAT locus is situated, and excluding all MATa isolates re-
sulted in high Fg values in accordance with the rest of the nuclear
genome.

The phylogeny estimated from nuclear site variation was next
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FIG 2 RAxML phylogeny of 53 nuclear genomes of C. gattii. All sites that were homozygous in all isolates and had an SNP in =1 isolate were used (1,432,518
sites, or 8.3% of the total length). Isolate names are colored according to geographic origin (blue, Pacific Northwest [PNW]; red, South America; green, Australia)
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compared to that of mitochondrial genome variation. While the
topologies of the mitochondrial and nuclear trees were similar,
there was substantial variation in branch lengths between the two
(Fig. 3A), most notably a large amount of mitochondrial diversity
in VGI relative to nuclear diversity. Evaluation with principal
component analysis (PCA) revealed that lineages were less dis-
cernible based on mitochondrial than on nuclear sequence
(Fig. 3B), possibly in part due to recombination between these
groups. Three of the six VGI isolates (E566, Ru294, and EJB2)
showed greater mitochondrial sequence similarity to VGII than
did their nuclear genomes. Ru294 also had a high number of
shared SNPs with VGIV, including a stretch across ATP synthase
subunit 6 (Fig. 3C). EJB2 and E566 also had fewer SNPs relative to
VGII than did other VGI isolates (Fig. 3C). Each of these isolates
has more than 100-fold depth of coverage, suggesting that this is
not an artifact of lower sequencing or alignment depth. Pairwise
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Fyp values from VGI-VGIII (0.642), VGI-VGIV (0.672), and
VGIII-VGIV (0.658) suggest that the mitochondria appear to be
more recombinogenic than their nuclear counterparts (Fg =
0.885, 0.894, and 0.885, respectively).

One of the 53 sequenced isolates was the progeny from an in
vitro cross between parental isolates VGII CBS10090 and VGIII
NIH312, previously reported (4). While the nuclear genome of
one isolate of this cross (progeny 5) appeared to be almost exclu-
sively derived from NIH312 (Fig. 3), the mitochondrial genome
has inherited large regions from both parents. By overlaying the
predicted genes (Fig. 3C), we found that progeny 5 had VGIII-
derived copies of NADH ubiquinone oxidoreductase chain 4, 4L,
and cytochrome ¢ oxidase subunit III. The crossover between
VGII and VGIII occurred in the middle of NADH ubiquinone
oxidoreductase subunit 5, which is therefore a chimeric gene. The
remaining 12 predicted genes were all from VGII, with which it
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clustered more closely, in contrast to its nearly VGIII-identical
nuclear genome. Analysis of depth of coverage across the mito-
chondria identified intron loss and size variation in some isolates
(see Fig. S4 in the supplemental material). For example, the intron
in cytochrome b is also ~1 kb longer in VGII isolates than in
VGI-II-1V isolates. The introns in cytochrome ¢ oxidase subunits
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I and II are also unique to the nonbasal VGII isolates, suggesting
that they have recently been acquired.

Multidrug transporters have undergone positive selection
along multiple independent branches and lineages of C. gattii.
To measure selection across the 53-isolate phylogeny, we em-
ployed the branch site model (BSM) of selection in Codeml, which
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calculates w across genes and branches/lineages. We calculated x?;
with multiple corrections across 17 subclades of the 53-isolate
tree, measuring selection across only the terminal nodes, or recent
selection (Fig. 2; see also Text S1 in the supplemental material).
Between 78 and 898 genes were found to be undergoing selection
in each of the 17 clades (Fig. 2; see also Data Set S1). Notable genes
identified in multiple subclades include the cell wall integrity pro-
tein SCW1 in 10 subclades and iron regulator 1 in three subclades;
others were unique to only one subclade, such as HSP70 in VGI,
excluding Ru294.

We compared domains under selection in each of the 17 clades
to all other domains (see Data Set S1 in the supplemental mate-
rial). Only 20 Pfam and 2 TIGRFAM domains were significantly
enriched from genes undergoing selection, and remarkably, only 8
of these were unique/nonredundant. Two domains belonging to
two genes (CDR ABC transporter and ABC 2-type transporter)
were independently identified in four subclades (CBS1930,
ICB184, VGIII, and VGI, excluding Ru294). Additionally, the
Pfam domain “ABC transporter,” belonging to a third gene, was
independently enriched in three of these subclades (CBS1930,
ICB184, and VGIII). Each of these transporters belongs to a single
paralog cluster of six genes, which includes the ABC transporter-
encoding gene AFRI. This class of gene includes multidrug trans-
porters with azole and fluconazole transporter activity in C. neo-
formans (46), Candida albicans (47), and Penicillium digitatum
(48). However, the closest C. gattii ortholog to AFRI was not one
of the three under selection.

We also found enrichment for two iron-sulfur aconitase genes
under selection in subclades 2001/935-1, VGIIx and ICB184.
These genes are thought to allow Cryptococcus to respond to and
survive nitrosative stress (49). In contrast to the major facilitator
superfamily (MFS) transporters, this domain was represented by
two separate orthogroups, suggesting that selection is acting on
multiple gene families of similar functions. This provides two ex-
amples of selection pressures acting on similar or, indeed, identi-
cal genes relating to stress and drug transport across the phyloge-
netic spectrum of C. gattii.

DISCUSSION

We describe for the first time a comparison of whole genomes
from all four lineages of C. gattii. We anticipate that the sequence
data, assemblies, gene predictions, and descriptions of lineage-
specific features will provide a valuable resource for the commu-
nity of researchers studying Cryptococcus. In addition to the re-
lease of these new genomes, which we primarily used to identify
lineage-specific differences, we also employed a large whole-
genome panel of resequenced isolates for C. gattii (n = 53), iden-
tifying high-confidence variants useful for tracking the epidemio-
logical and evolutionary history of this species. Leveraging these
data, we found multiple lineages from geographically overlapping
regions, as well as evidence for recent transcontinental spread in
VGIIb and the newly identified VGIIx.

While the ability for pathogens, including C. gattii, to avoid
oxidative, nitrosative, or other host-derived stress is well de-
scribed (7, 16, 39, 49), how individual strains vary in these prop-
erties is not well understood. Iron acquisition by high- and low-
affinity uptake systems, as well as extracellular binding and
import, is also an important virulence determinant for a number
of fungal pathogens, including Cryptococcus neoformans (50). In
this study, we used previous experimental studies on this model
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organism to infer the functionality of homologous genes in C. gat-
tii. While this approach is a useful proxy for function in C. gattii, it
is also unlikely to perfectly recapitulate between the two divergent
Cryptococcus species, and may in some cases have the opposite
effect or none in C. gattii compared with those seen in C. neofor-
mans. Another issue with investigating gene loss/gain is the accu-
racy of gene predictions, which can miss or wrongly identify legit-
imate coding regions. While we have extensively evaluated our
gene calls, it can be difficult in some cases to distinguish genuine
disruptions to gene structures from assembly and gene prediction
errors.

Despite these limitations, it is interesting that a subset of genes
involved in stress response and metal acquisition in C. neoformans
appears to be highly dynamic in terms of loss and gain by each of
the four lineages and to be undergoing recent selection in C. gattii.
While it is likely that the selection pressures driving these gene
family expansions and contractions are occurring predominantly
in the environment, they may result in key pathophysiological
differences in humans. For example, VGI is highly ubiquitous
worldwide (7) and has the fewest gene losses, which may enable it
to live in a broader niche. VGII is responsible for nearly all infec-
tions in the Pacific Northwest (PNW) (10) and has the greatest
number of gene losses, including (and potentially related to) those
that encode the RNAi machinery (35). VGII isolates also have a
large number of unique genes enriched for HSP70, COX6B, and
iron-binding domains, all of which could contribute to its hyper-
virulence. Finally, the loss of enolases and Ctr copper transporter
family domains in VGIII and VGIV, respectively, may be linked to
a reduced ability of these lineages to infect immunocompetent
hosts.

In addition to genes with a clear predicted role in virulence, we
identified a number of genes and domains that may have a
hitherto-unknown role in biological differences between the VG
groups. For example, VGII isolates are uniquely enriched for Pfam
SCAMP domains (33), involved in membrane trafficking, and the
Fop chromatin target of protein arginine methyltransferases.

In common with most eukaryotes, cryptococcal mitochondria
can shift between small punctate units and larger tubular net-
works of elongated mitochondria (51). However, VGII C. gattii
strains share a unique ability to generate subpopulations with tu-
bular mitochondria that exhibit increased intracellular prolifera-
tion within host cells (16). Both GO-term and Pfam enrichment
among LS genes suggested a number of genetic differences in
genes predicted to regulate the mitochondria, especially among
VGII and VGIII isolates. For example, LETM1, which is involved
in mitochondrial morphology in humans (42), may be absent in
VGIIL VGII is missing a mitochondrial cytochrome ¢ peroxidase
gene, the mitochondrial import inner membrane translocase sub-
unit TIM10, and a PIF1-like helicase, crucial for both nuclear and
mitochondrial genome maintenance (38). These genes are good
candidates for future work to map the genetic basis of differences
in tubularization and mitochondrial morphology among the lin-
eages.

Recently, we found that mitochondrial DNA could recombine
from separate lineages when crossed in the laboratory (4). Here,
we have extended our analysis by identifying a VGIIx-VGIII chi-
meric mitochondrial gene in progeny 5 and its contrast to the
near-identical parental VGIII nuclear genome. Evidence for
smaller-scale mitochondrial recombination was also found in a
number of natural isolates belonging to the VGI-VGIII-VGIV lin-
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eage cluster, supported by phylogenetic methods, pairwise Fq val-
ues, and PCA. The ability of C. gattii to recombine mitochondrial
DNA is still poorly understood. However, it does increasingly ap-
pear that the mitochondria play important roles in disease pro-
gression and outcome (16). Indeed, in this study, we have identi-
fied a number of nuclear lineage-specific genes that respond to
oxidative stress, import into the mitochondrial inner membrane,
and mitochondrial maintenance or morphology. It therefore
seems plausible that such differences between the nuclear ge-
nomes of each lineage are at least partly responsible for differences
in the mitochondrial phenotypes.

The evolution of pathogens separated by millions of years can
reveal a wide range of strategies to maintain infection or avoid
detection or predation. For example, genome expansions (52),
genome contractions (53), and changes in expression of effector
genes (54) each contribute to maintaining a pathogen’s niche. The
genome evolution of C. gattii shows that selection has not resulted
in changes to its genome size, at least since it diverged with C. neo-
formans, but has acted across small conserved families of drug
transporters and through gene expansions likely to facilitate sur-
vival and growth in the presence of an immune response. Con-
versely, numerous gene families have also been lost, suggesting
either fluctuations in selection pressures and/or an associated
cost, such as host recognition.

We show that lineage-specific virulence determinants are likely
to play important roles in disease progression. However, many
orthologous genes are also undergoing selection across all recently
diverged subclades of C. gattii. Notably, a number of these genes,
such as the ABC transporter PMRS5, are independently under se-
lection across numerous subclades (VGII ICB184, VGII CBS1930,
all of VGI except Ru294, and all of VGIII). Other drug transport-
ers under selection across multiple subclades belong to common
paralogous families and may overlap in function. By resolving and
making available these genomic differences, we hope to assist with
untangling pathogen, host, and environmental factors, as well as
providing a platform suitable for future expression, proteomic,
and (ultimately) pharmacological studies.

MATERIALS AND METHODS

Sequencing, assembly, and annotation of 16 genomes. Fifty-three
unique isolates of Cryptococcus gattii were obtained from 10 countries
spanning five continents and included representatives from clinical, en-
vironmental, and animal samples (see Table S4 in the supplemental ma-
terial). Genomes from each of these isolates were sequenced as part of this
study by one of three institutes (Birmingham University, The Broad In-
stitute, or Imperial College London) or previously sequenced by the
Translational Genomics Research Institute (22), using the Illumina HiSeq
GAIIx or 2000 platform. Isolates sequenced by the CDC were obtained
from the Short Read Archive (SRA) and converted from SRA format to
FASTQ using the SRAtoolkit v2.3.3-4. Twenty isolates from Birmingham
University/Imperial College London (BU/ICL) were recently described
(4) and submitted to the SRA.

For each of the 16 new C. gattii genomes, genomic DNA was used to
construct two libraries with average insert sizes of 197 bases and 2.5 kb as
previously described (55, 56), and each library was sequenced at the Broad
Institute on an Illumina HiSeq sequencer to generate 101-base paired-end
reads. This sequence was assembled using ALLPATHS (57) vR48559.
Genes were predicted and annotated by combining calls from multiple
methods. A training set was generated using GeneWise and Genemark
(58), and then GlimmerHmm (59), Snap (60), and Augustus (61) were
used to generate ab initio gene models. The best gene model at a given
locus was selected from these data sets using EVM (62); conserved genes

September/October 2015 Volume 6 Issue 5 e00868-15

Genome Evolution and Innovation in C. gattii

missing in gene sets were identified using OrthoMCL (63) and combined
with the EVM set. Genes were then filtered if >30% coding sequences
(CDS)  overlapped  TransposonPSI  (http://transposonpsi.source-
forge.net/) hits (E value, 1le—10) or overlapped repeat Pfam/TIGRFAM
hits or RepeatRunner (64) proteins. RepeatModeler v1.0.7 (http://
www.repeatmasker.org) was then used to identify de novo repeats from
the assemblies. rRNAs were more completely resolved in the VGI isolates
WM276 and NT10 (152 and 98 identified, respectively), compared with 5
or fewer for all other isolates, including the remaining three VGI isolates.

For R265 genome assembly improvement, C. gattii R265 reads were
first aligned with the previous R265 genome (GenBank accession number
AAFP01000000) using the Burrows-Wheeler Aligner (BWA) v0.7.4-r385
mem (65) and converted to sorted BAM format using SAMtools v0.1.9
(r783) (66). Pilon v1.5 (67) was next used to correct the assembly using
these alignments, resolving 124,377 N’s (36.64% of previous total ambig-
uous sites), 4,166 SNPs, 936 insertions, and 1,446 deletions. While the
total number of contig bases increased by 64 kb, the total scaffold length
was 25,573 nucleotides (nt) smaller. For the updated R265 assembly,
5,931 of the previous 6,210 genes were mapped and 529 additional genes
were added. The 279 genes that did not map from the previous R265
assembly had multiple, partially contained alignments, and all but one
gene had bases with Phred quality scores of =25.

Genes were functionally annotated by assigning Pfam domains, GO
terms, and ortholog mapping to genes of known function. HMMER3 (68)
was used to identify Pfam and TIGRFAM domains, using release 27 of
Pfam and release 12 of TIGRFAM. GO terms were assigned using
Blast2GO (69), with a minimum E value of 1 X 10710, Genes involved in
capsule biosynthesis were identified based on predicted orthology to
C. neoformans (29). Candidate missing genes were manually inspected,
and in one case (CAP64), the gene call is partial in VGII lineages due to an
assembly gap in R265.

Ortholog-based analysis of 16 assembled genomes. To reconstruct
the evolutionary relationships between the 16 de novo assemblies, we iden-
tified 1:1 orthologs using OrthoMCL and generated an alignment for each
gene using MUSCLE v3.8.31 (70), which was trimmed to the smallest
contiguous sequence, and then all alignments were concatenated. Prottest
v3.4 (79) was used to determine the best-fitting amino acid transition
model according to the Bayesian information criterion (BIC). The final
tree was produced using RAXML v7.7.8 (71) with 1,000 bootstrap repli-
cates.

DAGchainer (72) was used to identify maximally scoring syntenic
blocks of four or more ordered gene pairs. To identify lineage-specific
genes, we corrected for divergent 1:1 orthologs using synteny (see
Text S1 in the supplemental material). Multiple whole-genome align-
ments were built using the MULTIZ feature of the Threaded Blockset
Aligner (TBA) suite of tools (73). The input dendrogram provided to
MULTIZ was taken from the 16-assembly RAXML tree. The resulting
pairwise alignment was projected onto WM276 to ensure that each se-
quence is “single coverage.” The longest alignment was also the most
fragmented, which came from aligning the two largest assemblies, VGI
WM276 versus VGI NT-10. The fewest mismatches (highest similarity)
were found between VGIIb isolates 99/472 and RAMS5, which had a
16.85-Mb match and only 757 mismatches.

Variant calling from 53 genomes. Each of the 53 Illumina data sets
from all four research institutes was aligned with the CNB2 assembly
using BWA-MEM (65) and converted to sorted BAM and Mpileup format
using SAMtools54. The Genome Analysis Toolkit (GATK) (74) v2.7-4-
g6f46d11 was used to call both variant and reference bases from the align-
ments. Briefly, the Picard tools (http://picard.sourceforge.net) AddOrRe-
placeReadGroups, MarkDuplicates, CreateSequenceDictionary, and
ReorderSam were used to preprocess the alignments, followed by GATK
RealignerTargetCreator and IndelRealigner for resolving misaligned
reads close to indels. Next, GATK UnifiedGenotyper (with the haploid
genotype likelihood model [GLM]) was run with both SNP and indel
genotype likelihood models. We additionally ran BaseRecalibrator and
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PrintReads for base quality score recalibration on sites called using GLM
SNP and recalled variants with UnifiedGenotyper emitting all sites. A final
filtering step was used to remove any positions that were called by both
GLMs (i.e., incompatible indels and SNPs).

To assess the ability of GATK v2.7-4 UnifiedGenotyper to identify
variants, we realigned reads from the reference isolate R265 back with the
R265 genome after introducing 60,000 SNPs (corresponding to within
VGII variation) and 800,000 SNPs (maximum divergence detected) and
calculated the false discovery rate (FDR) (78). For both tests, BWA-MEM
aligned a greater proportion of the reads, which resulted in fewer false
positives. Using the BWA-MEM alignments, GATK UnifiedGenotyper
identified 99.83% true positives for the 60,000 introduced SNPs and
99.84% true positives for the 800,000 introduced SNPs. The rate of false
positives was very low, with a small reduction across greater tested diver-
gence (false-positive rate of 0.32% from 60,000; false-positive rate of
0.02% from 800,000).

Evolutionary analysis of 53 isolates. For phylogenetic analysis of the
53 isolates, we extracted all sites that had an SNP in =1 isolate and a
reference or SNP in every isolate (1,432,518 sites/8.3% of the total se-
quence). We inferred the phylogeny of the isolates using RAXML v7.7.8
(71) with the GTRCAT model and 1,000 bootstrap replicates. Enrichment
analyses were conducted using two-tailed Fisher’s exact test with g-value
FDR. Multiple testing corrections were achieved using both the Storey-
Tibshirani (75) and Benjamini-Hochberg (76) methods (requiring g val-
ues of <0.05 for each). For enrichment tests, we excluded Pfam, TI-
GRFAM, and GO terms related to transposable elements and domains of
unknown function.

For selection analysis, we employed the branch site model (BSM) of
selection in Codeml in PAML (77), which calculates w across genes and
branches/lineages, using a model for positive selection and a null model
(w = 1). We calculated y?, with concordance between both Benjamini-
Hochberg (76) (q < 0.05) and Storey-Tibshirani (75) (g < 0.05) multiple
corrections across 17 subclades of the 53-isolate tree, measuring selection
across only the terminal nodes (recent selection).

Accession numbers. The 20 recent isolates from BU/ICL were submit-
ted to the SRA under the project accession no. SRP017762. All 15 new
genomes and gene calls are available in GenBank under umbrella project
(PRJNA291740) and the project accession numbers ASCT01000000
(E566), ATAL01000000 (EJB2), AZGX01000000 (NT-10),
ASCO01000000 (Ru294), ASCN01000000 (CA1280), ASCQ01000000
(CA1873), ATAMO01000000 (IND107), AVEY01000000 (CBS10090),
AZGW01000000 (LA55), ASCM01000000 (RAM5), ASCP01000000 (99/
473), ASCS01000000 (CA1014), AAFP02000000 (R265), AVEX01000000
(2001/935-1), and ATAN01000000 (MMRL2647).
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